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Abstract. Sharp fronts with rapid changes in fluid saturations over short
distance and time scales often exist in multiphase flow in subsurface systems. Such
highly nonlinear problems are notoriously difficult to solve, and standard solution
approaches are often inefficient and unreliable. We summarize four existing and one
new transformation method (IT2) for solving Richards’ equation within a common
framework and compare performance for a wide range of media properties. We show that:
transformation methods can significantly improve solution efficiency and robustness
compared to standard solution approaches; transformation parameters depend upon
auxiliary conditions, media properties, and spatial and temporal discretization; and IT2

compares favorably with existing transforms.



1. Introduction

Modeling flow of multiple fluids in subsurface systems is an important water
resources problem for which many unresolved questions remain [Miller et al., 1997].
Resolving sharp fronts of a dependent variable as a function of space and time is a
particularly challenging aspect of this class of problems. These fronts can develop
when a more viscous wetting phase displaces a less viscous non-wetting phase, as when
water infiltrates a porous media that is initially relatively dry, resulting in sharp fronts
in volumetric fractions of the fluid phases for certain media properties and auxiliary
conditions.

While such sharp fronts result from many possible combinations of conservation
laws and constitutive relations of interest in multiphase flow problems, Richards’
equation (RE) with common constitutive relations is a simple case of substantial
practical importance where this difficult class of problems can arise [Miller and Kelley,
1994; Tocci et al., 1997]. Because of this, RE is a good test problem, although it is
understood that significant theoretical questions remain unresolved about its adequacy
for describing unsaturated flow [Gray and Hassanizadeh, 1991a; Gray and Hassanizadeh,
1991b; Miller et al., 1997].

Sharp volumetric fluid-phase fraction fronts result in part from nonlinearities in
constitutive relations that describe the interdependence of fluid pressures, saturations,
and conductivities. These nonlinearities are present in discretized forms of the governing
equations that are solved. Accurate resolution of these sharp fronts can require fine
discretizations in space and time, and can lead to systems of nonlinear algebraic
equations that are difficult to solve. Choosing discretization or nonlinear solution
methods inappropriately can lead to inefficient or unreliable approximate solution
approaches.

Several approaches to these problems can be grouped together under the rubric of

transformation methods. Transformation methods seek to reduce the sharpness of a



front in a problem through the identification and application of an appropriate change
of variable applied to the dependent variable. The original problem’s solution may then
be retrieved by applying an inverse transformation.

While several transformation methods have been applied to RE with some success,
we lack detailed investigations, comparisons, and guidance for the applying these
approaches generally. Further, some of the transformation methods applied to date
include a parameter(s) that must be specified, and the effect of the parameter’s value
on solution efficiency and robustness is often unknown. These difficulties provide a
barrier to the routine application of transformation methods for solving RE and other
multiphase flow problems.

The goal of this work is to advance the current understanding of transformation
approaches for solving Richards’ equation. The specific objectives of this work are (1)
to develop a framework to summarize transformation methods for solving RE; (2) to
identify key components of a solution approach for RE that may affect the efficiency
and robustness of the resulting approximation; (3) to compare existing transformation
methods for a range of media and auxiliary conditions; (4) to investigate the importance
of parameter selection on the efficiency of parameterized transformation methods; (5) to
identify and evaluate a new transform for a wide range of test problems; and (6) to give

guidance for the application of transformation methods to solve RE.

2. Background

Transformation methods for solving RE have existed for several decades [Rubin,
1968; Raats and Gardner, 1974; Haverkamp et al., 1977; Baca et al., 1978; Vauclin et
al., 1979]. The general objective of transformation methods is to overcome inefficiencies
in the numerical solution process—inefficiencies caused by the strong nonlinearity of the
media hydraulic properties as functions of pressure, particularly in the case of infiltration

into a media that is initially relatively dry. These types of infiltration problems give rise



to very high water pressure gradients near the wetting front and lead to computationally
inefficient numerical solutions when using standard techniques. Prohibitively small
time step sizes or a large number of nonlinear iterations are often required for such
problems. Combining transform methods with iterative, implicit, mass-conserving
numerical methods results in more efficient solutions. Current transformations include
integral [Haverkamp et al., 1977], hyperbolic function [Ross, 1990], variable switching
[Kirkland et al., 1992; Forsyth et al., 1995], and rational function transformations [Pan
and Wierenga, 1995].

Early attempts at transformation methods used an integral transform commonly
referred to as the Kirchoff integral transformation (IT1) [Rubin, 1968; Raats
and Gardner, 1974; Vauclin et al., 1979; Haverkamp et al., 1977; Redinger et al.,
1984; Campbell, 1985]. This transformation directly reduces the nonlinearity of the
conductivity terms in RE and, as a result, is effective in reducing the number of
nonlinear iterations required for a solution, under certain conditions. However, I'T1
depends on media hydraulic properties and will therefore vary spatially if the hydraulic
properties do so. Thus, simple application of IT1 is restricted to homogeneous media.
Corrections can be made to adapt IT1 to layered and gradational media by adding a flux
balancing correction [Ross and Bristow, 1990]. IT1 is also more complex to implement,
since an analytic function of the inverse is generally not available.

Solving the water-content-based form of RE can result in significantly improved
performance compared to the traditional pressure-based methods [Hills et al., 1989].
This is due to the fact that the media hydraulic functions are less nonlinear when
expressed in terms of water content than when expressed in terms of pressure,
particularly when modeling infiltration into a relatively dry media. Thus numerical
solutions using the water-content-based RE generally require fewer nonlinear iterations.
The limitation of this approach is that the water-content-based RE cannot be used to

solve infiltration problems involving saturated regions. A 6-based transform (THT) is



an attempt to retain the advantages of water-content-based methods while remaining
applicable to media containing saturated or near-saturated regions. THT’s include
the affine transformation of § approach [Kirkland et al., 1992] as well as the primary
variable switching technique [Forsyth et al., 1995]. The THT has the characteristics
of water content when the media is unsaturated and of pressure when the media is at
or near saturation. This approach has shown roughly the same reduction in nonlinear
iterations as in the water-content-based solution. Since the THT is defined in terms of
volumetric water fraction, it will vary spatially if the media type does so. As is the case
with IT1, simple application of THT is restricted to homogeneous media.

Because direct application of IT1 and THT is restricted to homogeneous media,
an alternate class of transforms was developed that would be directly applicable to
heterogeneous media. These transforms are defined strictly in terms of 1 and arbitrary
parameter(s). Since v is continuous across the boundaries between different media
types, these transform functions will be continuous variables in heterogeneous media,
provided that the parameters remain constant across media types. The first such
transform dates back to a simple log transform [Baca et al., 1978|. This was effective,
but a more general and efficient transform, defined in terms of the hyperbolic sine
function (HST), was subsequently introduced [Ross, 1990]. HST reduces computational
expense, but it introduces two arbitrary parameters. It is recommended [Ross, 1990]
that one of the parameters be fixed at a constant percentage of the other to reduce HST
to one arbitrary parameter [Ross, 1990]. However, to optimize the HST completely for
a given problem, the two parameters must remain arbitrary. Since the introduction of
HST, another of this class of transforms has been proposed. This transform is defined in
terms of a rational function (RFT) of ¢4 [Pan and Wierenga, 1995]. The RFT provides
performance improvements similar to HST, but introduces only one arbitrary parameter.

Because all of the transforms except IT1 involve arbitrary parameters, selecting

parameter values is important to determine the efficiency of a particular transformation.



The literature to date lacks rigorous optimization of transform parameters over a
wide range of test problems. The literature suggests that selection of HST [Ross,
1990] and RFT parameters [Pan and Wierenga, 1995] for optimal or near-optimal
performance is independent of media properties, but this claim must be verified through
formal optimization and sensitivity analysis. Such analysis is critical in determining
the efficiency and robustness of a given transformation but has not been reported in
the literature to date. If the data suggest a relationship between effective transform
parameters and media properties for the HST and RF'T type transformations, then the
advantage that these transforms are applicable in their current form to heterogeneous

media conditions becomes less certain.

3. Formulation
3.1. 1D Richards’ Equation

We consider one-dimensional (1D) infiltration in this work, beginning with a
general, p version of the 1D RE. For the case in which fluid compressibility is included

for a vertical system, the p version of the common mixed form equation is given by
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where S; is the specific storage coefficient, which accounts for fluid compressibility; S,
is saturation of the aqueous phase; p = p(¢)) is a general transformation function; v is
the pressure head; ¢ is time; # is the volumetric water fraction of the aqueous phase; z is

the vertical spatial dimension; and K is the hydraulic conductivity.

We consider problems with auxiliary conditions of the form

p(z=0,t>0) = p=p(h) (3)

p(z=2,t>0) = pa=p(¢a) (4)



where Z is the length of the domain, ¢y may be a function of space, and v¥; and 1 are
constants. The auxiliary conditions py, p;, and p, are found by the appropriate change

of variables of the initial and boundary conditions given in terms of .

3.2. Constitutive Relations

Solution of RE requires constitutive relations to describe the interdependence
among pressure, saturation, and hydraulic conductivity. For the purpose of this work,
we use the well-known van Genuchten (VG) pressure-saturation relationship [van

Genuchten, 1980], given by
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where m, =1 — 1/n,; S, is the effective saturation; 6, is the residual volumetric water
content; 6, is the saturated volumetric water content; and «, and n, are experimentally
determined coefficients in the VG p-S model, which are related to the mean pore size
and the uniformity of the pore size distribution, respectively.

The saturation-permeability relation for the aqueous, or wetting phase, is described

using Mualem’s model [Mualem, 1976]
K (S.) = K5 [1-(1-s/m)"] (6)

where K is the water-saturated hydraulic conductivity, and S, = S,() from (5).

3.3. Transform Definitions

Starting from the general p version of the 1D RE (1), the more commonly used
mixed, ¢-based, and #-based (water-content-based) forms of RE can be retrieved. The
basic idea behind the transformation approach is to define a function p(¢)) that will
result in a more efficient and robust solution to the governing equation, (1). Several
transformations have been developed to date, and the definitions of p(¢) for each are

listed in Table 1. Arbitrary parameters are represented by 3 and f;.



THT and IT1 linearize either the temporal or spatial derivative term in RE,
respectively. While it is not possible to linearize both the temporal and spatial terms in
RE completely, the efficiency and accuracy of the numerical solution can be significantly
enhanced by choosing a transform that achieves the proper balance between linearization
of temporal and spatial terms. RF'T and HST can partially linearize both temporal and
spatial terms; they are defined explicitly in terms of v instead of K or . This allows
for a straightforward application for heterogeneous media, but such applications will
be effective only if the arbitrary parameter is not dependent upon and sensitive to the
given media parameters.

As an alternative to extant transforms, we tested several alternative transforms
in an attempt to find one that would effectively balance the linearization of temporal
and spatial terms and would not be as sensitive to changes in media parameters. We
evaluated higher-order rational functions, exponential-based functions, and integral
functions. We looked at transforms defined explicitly in terms of 1 as well as those
that included media hydraulic functions K and € in their definitions. Based upon our
evaluation, we have found an integral transform that is effective in terms of efficiency
and robustness. This transform, I'T2, is defined in terms of # and the integral of K.

Note that all of the transform functions are C' continuous functions of ¢» and have
non-zero derivatives for all values of v; i.e., Op/0Y # 0. These conditions are necessary
for accurate and efficient solution of (1). Note also that for the case of g = 0, IT2
reduces to I'T1. Thus, IT1 is a subset of IT2.

4. APPROACHES

4.1. Spatial and Temporal Approximation

The numerical solution of (1) begins with a discrete formulation, for which we use a

spatially-centered, fully-implicit finite difference approximation. For the spatial domain
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[0,Z], a uniform grid is defined with n,, — 1 intervals [z;, zi11], ' of length Az, with

Az =Z/(n, — 1), and 2z; = (i — 1)Az for 1 < i < n,. (1) is then approximated for

1<i<n, as
. o\
S 1SS (SSSG—) | =
At op), <p b )
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where n,, is the number of spatial nodes in the solution, p; is the approximation to the
solution p(z;), [ indicates time level, and K-} /o are interblock conductivities estimated
from known values of K (pit]), K(p{™), and K (p{17).

Of the several ways to estimate interblock conductivities [Haverkamp and Vauclin,

1979; Zaidel and Russo, 1992; Warrick, 1991], we investigated four approaches. The

first approach we used was the arithmetic mean technique (KAM):
Kit12 = (Ki 4+ Kit1) /2 (8)

KAM has been used routinely [Haverkamp and Vauclin, 1979; Warrick, 1991; Zaidel
and Russo, 1992] and is simple and inexpensive to compute.

Due to the nonlinearity of v, the interblock conductivity estimation technique
defined by K[(¢; + ¥;+1)/2] is ineffective. Nonlinear solvers will often fail at small
simulation times when using this approach. But since the transformed variable p will be
somewhat smoother in terms of the spatial dimension, the second approach we used was

the transformed analog of this approach, i.e., conductivity evaluation at the arithmetic

mean of the transformed variable p (KAMP). KAMP is defined as

Kit1jo = K [(pi + pix1) /2] 9)

Because K varies in space as a function of v, an integral representation of mean

interblock values can be computed |Warrick, 1991; Zaidel and Russo, 1992]. The third
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approach we used is an integral representation in transformed space (KINT):

fmam{piyl’iil} (K%)dp

min{p; pi+1} :
o if p; # pit1
. — maz{p;,P;+1} dy 9 ) )
Kii1/o fmin{pi?m;ﬂ (42)dp (10)
K;, if p; = pix1

This approach has not been widely used for the solution of RE because of the apparent
expense involved in computing the integrals. This approach has not been used in a
transform solution to RE to our knowledge.

The fourth approach we used for estimating interblock conductivities is termed the

arithmetic mean saturation (KAMS) [Zaidel and Russo, 1992] and is computed by
Kit1p =K I:(Sei + Se,-il) /2] (11)

This technique is easy to implement but if spline approximations are used, this approach
is most efficiently implemented by splining in terms of S, which itself is splined in terms
of p. This results in some added expense. Spline issues are discussed in more detail

below.

4.2. Nonlinear Solution Methods

To find an approximating solution {p;;1 < ¢ < n,} to (7) requires solving a system
of nonlinear equations. For the purpose of this work, we use either modified Picard
iteration (MPI) [Celia et al., 1990] or full Newton iteration (NI). The MPI technique
produces a simple computational algorithm that is mass conserving for numerical
approximations that preserve spatial symmetry.

The NI system is formed from (7) by defining

1 o +1
fi = E 0£+1 - 05 + (Sssaa_;f> (pé_H _pé)]
1 8¢>l+1 ! ( aw)”l
- K== +1 Y | 22 I+1 _ (—_}—1
AZZ ( ap i+1/2 (pz—l—l pz ) 3p i_1/2 (pz pz 1)
1
T A [Kéﬂ/z - zli—ll/Z} (12)
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and then solving for f(p) = 0 by Newton iteration

[J{Ap} = —{/} (13)

where [J] is the Jacobian. NI applied to a solution algorithm that uses fixed time steps
is not an effective strategy, since reliable convergence often requires very small time
steps. We overcome this problem by using a quadratic/cubic line search technique
[Dennis and Schnabel, 1996] in concert with NI, which we term a NI-line search (NILS)
approach. NILS is much more robust than NI.

We terminated the nonlinear solvers based on an absolute error measure of p. Thus,
if the ranges of the various transforms are not equal, those with smaller ranges will tend
to converge sooner, though often with increased error. To avoid this potential problem,
the transforms were normalized so that the ranges of each are equivalent; i.e., each

of the transform functions maps the domain [t, ] onto the range [0,p,], where

wm = mm[O, wmaw]: and Pm = wm - wmm

4.3. Efficiency Considerations and Evaluation

We define efficiency as the computational effort required to achieve a specified
accuracy. The evaluation of constitutive relations requires a significant amount of
computational effort using the standard approach for solving RE. Therefore these
relations are often evaluated, the values stored in tables, and intermediate values
determined by linear, cubic, or Hermite spline interpolation. This procedure results in
a significant savings in computational effort compared to direct function evaluations
without a significant change in the accuracy of the solution. Based upon our previous
work and some additional screening for transformed solutions, we used Hermite splines
in this work, which are described in detail elsewhere [Miller et al.,).

Table interpolation reduces computational effort even more for transformation

approaches than for standard approaches for solving RE. This is especially so for the
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more complex transforms such as IT2, which would require the determination of roots
within a numerical integration procedure. Table interpolation greatly reduces the
computational effort per iteration, although this effort is still greater than the effort
required for a table interpolation approach to an untransformed solution. The difference
in effort between a transformed and an untransformed approach depends upon the
nonlinear solution scheme used, although this difference is usually less than 50% per
iteration. Clearly then, transformation methods must require fewer iterations than
untransformed solutions in order to be more efficient.

Error vs. work plots are used to compare the various transforms in terms of
efficiency, robustness, and parameter sensitivity. These plots not only show the overall
effectiveness of a given transform in terms of speed and accuracy over a wide range of
media conditions, they also serve to illustrate optimal parameter range and parameter
sensitivity. To compare the transformation approaches to the traditional untransformed
approach, the cost per iteration used to calculate work as a function of nonlinear
iterations is adjusted to account for the additional effort required in the transformed
solution approach.

For methods based upon the MPI approach, the work primarily concerns forming
the coefficient matrix and right hand side vector, and solving the linear systems of
equations. This observation allows for a simple, straightforward measure of work that
requires relative weights for the two procedures and integer counts for each of the
procedures, such as

Wp = W,N, + wWiny (14)

where W), is a work measure for MPI methods, w, is a weighting factor for formation
of the coefficient matrix and right hand side vector, which are typically done at the

same time, w; is a weighting factor for solution of the linear system of equations, n,

is the number of coefficient matrix formation calls, and n; is the number of linear

solutions performed. As reported in previous work [Tocci et al., 1997], estimates of
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the weighting coefficients based on detailed profiling results for the untransformed RE
using MPI solver, KIN'T permeability approximations, and Hermite spline interpolation
are (we)y = 0.530 and (w;)y; = 0.181. We performed similar profiling tests using the
transformation approach and, based on these results, our estimates for the solution of
the transformed RE using MPI, KINT, and Hermite splines are (w.);, = 0.743 and
(wy)y = 0.181. Thus for this case, the transformation approach requires about 30%
more effort per iteration than the untransformed solution.

Error was evaluated by comparison to a dense-grid solution. This error, referred to

as dense-grid error, is defined by

1 1/k
A k
leo li= |3 (- )| (15)
Nn =1
where £ is the norm measure and ¢; is an accurate approximation of the true solution
based on a dense spatial grid. £ = 1, £ = 2, and k£ = oo were considered in this work
and termed L, Ly, and L., error norms, respectively. The dense grid solutions were

generated using the MPI solver with temporal and spatial grid sizes equal to 1/32 of the

standard sizes listed in Tables 2 and 3.

4.4. Parameter Optimization

The parameters for any of the transformations can be optimized for some
performance-based objective function such as amount of work required or dense-grid

error. In this work, we use the objective function

min  {W, (8) x || ep (B) [} (16)

ﬂmin SﬂSﬁmaw

where (3 is the arbitrary transform parameter, W), is the required work as defined by
Equation (14), and || €p ||; is the dense-grid error as defined by Equation (15).
For the parameter optimization of the work, we used the nonlinear optimization

package IFFCO [Gilmore and Kelley, 1993]. IFFCO is a projected quasi-Newton
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algorithm that uses a decreasing sequence of finite difference steps (scales) to
approximate the gradient. It uses an approximation to the Hessian and a line search

algorithm that gives the code global convergence capabilities.

4.5. Test Problems

We compared the transformation approaches for solving RE to traditional solution

methods using eight sets of test conditions, which are summarized in Tables 2 and 3. ‘Tables 2 and

Four of these conditions (Problems A-D) have been used previously in the literature
as test problems [Miller and Kelley, 1994] [Celia et al., 1990; Rathfelder and Abriola,
1994] [Forsyth et al., 1995]. Problems E-H represent various soil textural groups sand,
loamy sand, loam, and clay loam, respectively, according to the USDA classification
[Soil Conservation Service, 1975] as estimated by Carsel and Parrish [Carsel and
Parrish, 1988] from analyses of a large number of soils.

With the exception of Problems C and D, each set of simulation conditions yields a
difficult sharp-front problem with relatively dry initial conditions. Problems C and D
were considered because they offer an excellent benchmark for comparing our results
to recent research performed using state-of-the-art methods. However, Problems C
and D are substantially easier than the remaining problems because the domain is
much smaller, the initial conditions are less severe, and (for Problem C) fully saturated
conditions do not develop.

To illustrate the effect of the transformation approach on resulting solution profiles,

sample results are plotted for Problem A. Figure 1 shows the solution in terms of the Figure 1

untransformed pressure head ¢ at various simulation times. Figure 2 shows the solution Figure 2

in terms of the transformed variable p at various simulation times, using the optimized
IT2 transform. Clearly, the infiltration profile is smoother when plotted in terms of the

transformed variable p.
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5. Results and Discussion

The number of transforms (four), interblock conductivity methods (four), nonlinear
solution methods (two), test problems (eight), and other variables of concern, such
as spatial and temporal discretization combine to yield a large number of possible
combinations. While several thousand simulations were performed in this work, a
complete analysis of each of these variables was beyond the scope of this effort. In the
sections that follow we report on results of: (1) baseline comparisons for interblock
conductivity and nonlinear solution methods; (2) performance comparisons for all
transforms and test problems using a single nonlinear solver and interblock conductivity
method; and (3) the sensitivity of the transform parameter, 3, to spatial and temporal

discretization levels.

5.1. Baseline Comparisons

For each of the eight test problems, baseline comparisons were made for simulations
incorporating all possible combinations of transformation, interblock conductivity
estimation, and nonlinear solver. All of the simulations were made using fixed time
steps and one arbitrary transformation parameter. For the case of the HST this was
accomplished by setting #; = 0.13 [Ross, 1990]. Parameter optimization was performed
for all transforms on each test problem using IFFCO. These results were used to identify
the most promising combinations of interblock conductivity approach, nonlinear solver,
and transform.

While these results are not reported in detail, we draw the following general
conclusions from our baseline runs: (1) the integral conductivity estimation method
consistently demonstrated a greater reduction in dense-grid error than the other three
interblock conductivity approaches with only slightly greater computational cost; (2)
MPI typically required more iterations but less work than the NILS, due to the higher

per iteration work required for the NILS solver; and (3) the IT2 transform compared
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favorably with all other transforms in terms of efficiency and robustness. Based upon
these results, we limited our additional phases of this work to the KINT and MPI

approaches, although all transforms were considered.

5.2. Performance Comparisons

Using the general observations made from the baseline comparisons, a set of
simulations was performed using the KINT interblock conductivity estimate and the
MPI nonlinear solver. For this set of simulations, work and error were observed as a
function of § for all four transforms and all eight test problems. Table 4 shows the
allowable transform parameter ranges over which convergence was achieved, the optimal
parameter values, and resulting optimal work and error values. IT1 is not listed as a
separate transform since it is represented by the 3 = 0 point of the I'T2 transform.
Though several of the optimal 3 values for IT2 are zero or close to zero, particularly for
problems involving n, < 2, significant differences in performance are seen for IT1 and
IT2 over the entire range of problems considered.

The error vs. work results are illustrated for two of the test problems — A and C
—in Figures 3 and 4, respectively. The lines on the work-error plots represent the work
and error for each transform as the transform parameter is varied. Results are plotted
for parameter values at equally spaced intervals over the range of allowable values. For
THT, HST, and RFT, data points are plotted at equally spaced intervals in 3, and for
IT2, data points are plotted at equally spaced intervals in log f.

Based upon this set of simulations, the following observations are made:

1. transforms generally lead to more efficient solutions, sometimes as much as an
order of magnitude more efficient as measured in terms of the objective function

minimized in this work;

2. transforms tended to be increasingly efficient compared to untransformed solutions

Figures 3 an
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as the sharpness of the front increased, such as for cases in which a saturated zone

developed and n, was relatively large;
3. all transforms were generally sensitive to 3 for a given problem.
4. the optimal value of  varied among problems for all transforms;

5. while variations in efficiencies existed among transforms for each problem, I'T2 was

in general the most efficient transform; and
6. I'T2 was typically the least sensitive to changes in 3.

These data show that for sharp-front problems, transformation methods can
significantly reduce computational effort and increase robustness of the solution scheme
given an appropriate value for 5. However, guidance does not yet exist to choose an
appropriate value of 3 for any transform a priori. Further, the sensitivity of transforms
to media properties suggest that the relative efficiency and robustness of transform

methods will likely decrease as the degree of media heterogeneity increases.

5.3. Parameter Sensitivity to Discretization

We performed a discretization study to investigate the effects of spatial and

temporal discretization on the behavior of all transformation methods for Problems A,

B, C, and H and report these results in Table 5. For each problem, a coarse spatial grid
and two coarse time-step sizes were tested. Results from these numerical experiments

showed that IT2 and RFT were able to converge and give accurate solutions on all of

the coarse spatial and temporal grids. For the untransformed RE, the nonlinear solver

failed to converge for all of the problems except C. The number of spatial nodes in the

coarse-grid simulations was roughly 10 times less than in the previous simulations, which

resulted in significant computational savings. Work measure were scaled linearly as a

function of the number of spatial nodes. Therefore, the IT2 and RFT transformations
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are able to provide accurate solutions at much larger discretization scales, resulting in
very efficient simulations that would not be possible using the untransformed RE or
other transformations.

Figure 5 shows the solution profiles in untransformed space for Problem A,
comparing dense grid and coarse grid solutions at various simulation times. The dense
grid solutions, shown as solid lines, are achieved using 25601 spatial nodes at a fixed
time-step size of 1.56e-6 days. The coarse grid solutions, shown as dashed lines, are
achieved using 41 spatial nodes at a fixed time-step size of 2.0e-4. While the coarse grid
solution is not highly accurate, it is impressive that a solution was attained at all and
this quality of result may be adequate for some uses.

Based upon these results, we find that the optimal 3 is sensitive to spatial and
temporal discretization, and that the optimal 3 for a given discretization may lie outside
the range for which convergence can be achieved at another discretization, especially
for the RF'T approach. The general trend noted was that the range of 3 for which
convergent results were achieved tended to become narrower as the discretization became
coarser. We also found that the objective function (16) in the parameter optimization
exhibits a more clearly defined minimum as the discretization is coarsened, yet the the
range of 3 values yielding efficient solutions also becomes narrower.

To illustrate the sensitivity of optimal 3 to spatial and temporal discretization, RFT
and IT2 3 values were optimized over a range of spatial and temporal discretizations
for Problem A. These results are shown as contour plots in Figures 6 and 7. Optimal
values as a function of Az and At are clearly smoother for IT2 than for RFT. We also
noted that for RFT, 3’s closer to the optimal 3 are required for good performance. For

IT2, performance is not as sensitive to small deviations from the optimal £.

Figure 5

Figures 6 an




20

5.4. Parameter Estimation

Given the relative insensitivity of the IT2 parameter to changes in media
conditions, it is desirable to define an estimator for this parameter in terms of known
system properties. Such an estimator would be beneficial in providing an effective
transform without the need for expensive nonlinear parameter optimization. Using
finer discretization scales, trends were detected in optimal IT2 parameter values as a
function of media parameters n, and «,. However, as discretization parameters are
coarsened, the optimal work and error values become more sensitive to changes in the
IT2 parameter. Thus, it is difficult to define an estimator for the IT2 parameter that
will yield optimal or near-optimal work and error results over a wide range of media and
discretization parameters based upon the set of results generated to date.

Preliminary work shows that it may be much easier to define an estimator for
the IT2 parameter that will yield optimal results when using a variable time-step
solution method than for the fixed-time-step cases considered in this work. The further
development of this notion, or alternative approaches to estimating a near-optimal
( as a function of media properties, auxiliary conditions, and spatial and temporal

discretization levels is the subject of future work.

6. Conclusions

Several conclusions can be drawn from our comparison of transformation approaches
and traditional approaches to solving RE for a range of media properties and auxiliary

conditions.

e Transformation approaches have the potential to lead to more efficient and robust

solutions of Richards’ equation.

e The potential advantage of transformation approaches increases as the difficulty of

the problem increases, as measured by the average number of nonlinear iterations
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per time step that are required for the untransformed case.

Capitalizing on the potential advantages of transform methods requires
specification of an appropriate transformation and knowledge of a reasonable value

for any free parameters that exist in the transform.

A set of one new (IT2) and four existing transforms are described within
a common framework, and the optimal transform parameter is shown to
depend upon auxiliary conditions, media properties, and spatial and temporal

discretization.

IT2 showed good efficiency and robustness compared to all other transforms for a

wide range of media properties and discretization levels.
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Figure 1. Solution profile in 1 for Problem A.

Figure 2. Solution profile in p for Problem A.
Figure 3. Error vs. work for Problem A using MPI solver and KINT conductivity

estimation.

Figure 4. Error vs. work for Problem C using MPI solver and KINT conductivity

estimation.

Figure 5. Comparison of solution profiles for dense and coarse grid solutions to Problem

A.
Figure 6. Contour plot of optimal RF'T parameter 8 vs. Az and At for Problem A.

Figure 7. Contour plot of optimal I'T2 parameter 3 vs. Az and At for Problem A.



Table 1. Transformation Definitions

Transformation p Definition

IT1 v K@)dy, —00 < P < 00

THT a [0W) = 0(8)] + B, Y < B

v, Y >0

HST sinh [— wﬂ—lﬂ] , v < B
—48, ) > B

RFT e ¥ <0

Y, ¥ >0

IT2 oK@ d + 5 0@)=-6], <0

[2)
90 lyo ¥V + 2(0),

v >0




Table 2. Test Problem A-D Parameters
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Variable Problem A Problem B Problem C Problem D
0, (—) 0.093 0.279 0.102 0.000
0s (—) 0.301 0.416 0.368 0.330
a, (m™1) 5.47 6.12 3.35 1.43
ny (—) 4.264 1.914 2.000 1.506
K, (m/day) 5.040 2.298 7.970 0.067
S, (m 1) 1.0 x 10 1.0 x 107 0.00 0.00
2 (m) [0,10.0] [0,10.0] 0,0.3] [0,6.0]

t (days) [0,0.18] [0,0.265] [0,0.092] [0,7.16]
o (m) -z —z -0.10 -0.3069
Yy (m) 0.00 0.00 -0.10 -0.3069
s (m) 0.10 0.10 -0.75 -0.07
Az (m) 0.0125 0.0125 0.0025 0.0125
At (days) 5.0 x 1073 1.0 x 10~ 5.0 x 10~ 7.16 x 102




Table 3. Test Problem E-H Parameters
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Variable Problem E Problem F Problem G Problem H
0, (—) 0.045 0.057 0.078 0.095
0s (—) 0.430 0.410 0.430 0.410
a, (m™) 14.5 124 3.60 1.90
Ny (—) 2.680 2.280 1.560 1.310
K, (m/day) 7.128 3.502 0.250 0.062
Ss (m™1) 1.0 x 107 1.0 x 107 0.00 0.00
z (m) [0,10.0] [0,10.0] [0,5.0] [0,2.0]

t (days) [0,0.24] [0,0.45] [0,2.25] [0,1.0]
Yo (m) -2 —z -z e

Yy (m) 0.0 0.0 0.0 0.0

Yy (m) 0.10 0.10 0.10 0.10
Az (m) 0.0125 0.0125 0.0125 0.00625
At (days) 1.0 x 107* 1.5 x 107* 3.0x 1073 2.0 x 1073




Table 4. Simulation Results
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Optimal Performance Values

L, Error Work x
Problem Transform Bomin Brmaz Bopt (x1073) L, Error
A UNT 5.30 129.85
THT VYmin -0.05 -0.05 3.93 134.80
HST Ymin -0.15 -0.15 3.08 97.02
RFT -3.50 0.00 -3.50 4.36 140.39
IT2 0.00 100.00 0.58 0.74 19.24
B UNT 0.69 17.46
THT Ymin -0.015 -1.20 0.46 15.90
HST Ymin -0.04 -1.50 0.46 15.89
RFT -36.00 0.00 0.00 0.69 22.63
IT2 0.00 20.00 0.001 0.50 15.99




Table 4. (continued)

32

Optimal Performance Values

L, Error Work x

Problem Transform Bonin Bimaz Bopt (x1073) L, Error
C UNT 12.14 21.25
THT Ymin 0.00 0.00 5.78 8.84

HST Ymin -0.001 -1.60 6.51 9.83

RFT -10.00 0.00 -10.00 5.76 8.87

IT2 0.00 100.00 0.005 6.27 6.27

D UNT 0.08 0.07
THT Ymin 0.00 -0.13 0.08 0.08

HST Ymin -0.001 -0.06 0.08 0.07

RFT -45.00 0.00 -45.00 0.08 0.08

IT2 0.00 100.00 0.04 0.08 0.08




Table 4. (continued)

33

Optimal Performance Values

L, Error Work x
Problem Transform Bimin Bimaz Bopt (x1073) L, Error
E UNT 5.22 110.66
THT Ymin -0.03 -0.03 0.60 21.78
HST Ymin -0.05 -0.05 0.33 9.87
RFT -71.00 0.00 -71.00 0.33 8.51
IT2 0.00 5.00 0.05 0.27 7.69
F UNT 4.86 125.87
THT Ymin -0.04 -0.04 0.34 13.77
HST Ymin -0.02 -0.02 0.70 26.46
RFT -63.00 0.00 -63.00 0.69 21.25
IT2 0.00 1.30 0.01 0.31 11.07




Table 4. (continued)
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Optimal Performance Values

L, Error Work x

Problem Transform Bmin Bimaz Bopt (x1073) L, Error
G UNT 1.61 19.96
THT Ymin -0.01 -0.90 1.42 23.86

HST Yrmin -0.12 Umin 1.60 25.76

RFT -68.09 0.00 -47.50 1.36 10.74

IT2 0.00 1.27 0.002 1.46 14.89

H UNT 0.51 4.04
THT Ymin -0.007 -0.01 0.46 5.11

HST VYrmin -0.22 Ymin 0.51 5.30

RFT -201.00 0.00 -17.50 0.45 4.20

IT2 0.00 0.73 0.00 0.51 2.47




Table 5. Coarse Grid Simulation Results
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Optimal Performance Values

L; Error Work x
Media Az At Transform Bomin Bmaz Bopt (x1073) L, Error
A 0.1 le-4 UNT DNC
THT -2.90 -0.50 -0.50 2.68 4.50
HST DNC
RFT -5.49 -2.10 -5.49 43.98 68.70
IT2 0.00 1.40 0.003 2.22 2.95
2e-4 UNT DNC
THT -0.85 -0.31 -0.31 2.41 2.73
HST -1.04 -0.92 -0.92 7.93 7.88
RFT -4.00 -0.53 -0.53 6.08 5.96
IT2 0.00 1.80 0.01 2.38 1.97




Table 5. (continued)
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Optimal Performance Values

L, Error Work x

Media Az At Transform Bonin Bimaz Bopt (x1073) L, Error
B 0.1 2e-4 UNT DNC
THT DNC
HST DNC

RFT -71.00 -6.80 -50.90 3.95 5.17

IT2 0.00 1.40 0.00 15.30 30.97
de-4 UNT DNC
THT DNC
HST DNC

RFT -45.80 -6.70 -43.80 3.97 2.29

IT2 0.00 1.40 0.00 12.68 10.61




Table 5. (continued)

Optimal Performance Values

L, Error Work x
Media Az At Transform Bimin Bmaz Bopt (x1073) L, Error
C 0.03 1le-3 UNT 267.79 9.59
THT Ymin 0.00 -2.16 9.89 0.46
HST Ymin -0.001 -2.51 10.48 0.49
RFT -200.00 0.00 -0.28 17.19 0.79
IT2 0.00 93.00  0.006 12.81 0.45
2e-3 UNT 277.55 6.95
THT Ymin 0.00 -1.97 10.71 0.32
HST Ymin -0.001 -2.26 12.33 0.37
RFT -200.00 0.00 -0.35 18.49 0.54
IT2 0.00 93.00  0.008 13.61 0.29




Table 5. (continued)

Optimal Performance Values

L, Error Work x

Media Az At Transform Bmin Bimaz Bopt (x1073) L, Error
H 0.05  4e-3 UNT DNC
THT DNC
HST DNC

RFT -33.40 -7.03 -17.20 3.39 1.35

IT2 0.00 0.16 0.00 9.70 2.50
8e-3 UNT DNC
THT DNC
HST DNC

RFT -26.80 -6.46 -17.70 3.57 0.70

IT2 0.00 0.17 0.00 9.48 1.22
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